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ABSTRACT  

Cardiac function assessment using echocardiography is a crucial step in daily cardiology. However, cardiac boundary segmentation and 

in particular, ventricle segmentation is a challenging procedure due to shadows and speckle noise. Manual segmentation of the cardiac 

boundary is a time-consuming process which rules out con- ventional segmentation for many situations such as emergency cases and 

image-guided robotic interventions. Therefore, providing an efficient and robust autonomous segmentation method is crucial for such 

applications. In this paper, a fast and fully automatic deep learning framework for left ventricle segmentation is proposed. This model 

couples the advantages of ResNet and U-Net to provide reliable segmentation results. We propose a new encoder in the U-Net, defined as 

ResU which is a modified version of ResNet-50 and has a superiority over ResNet in data denoising. We trained this model on the dataset 

CAMUS (Cardiac Acquisitions for Multi-structure Ul- trasound Segmentation) which is a large, publicly available and fully annotated 

dataset for 2D echocardiographic assessment. It is shown that this model outperforms other state-of-the-art methods in terms of 

accuracy with a Dice metric of 0.97 ± 0.01. 

 
 

 

 

1. Introduction 

 
Cardiac imaging is an important tool in evaluating cardiac func- 

tionality and image-guided cardiac interventions. Echocardiography is 

the most cost-effective image modality when compared with MRI and CT 

[1]. Also, echocardiography devices are available in portable versions 

that can examine patients’ heart functionality outside of clinics [2]. 

Moreover, the ability to provide real-time images of the heart is another 

essential advantage of echocardiography scanners. However, echocar- 

diography images have several issues that affect the results of seg- 

menting the cardiac boundaries, and in particular those of the left 

ventricle. These images, in addition to shadows and dropouts, have 

multiplicative noise speckles which happen as a result of reflecting the 

sound wave echoes to the transducer. 

Among many applications of cardiac imaging, image-based cardiac 

evaluations in emergency cases and interventions require real-time 

segmentation of the endocardial borders. Nevertheless, 

conventionally-used manual segmentation of the cardiac boundary is a 

time-consuming process and prone to poor reproducibility. Hence, 

automated segmentation methods are required in this field to provide 

faster cardiac functional analysis. Traditional segmentation methods, 

such as thresholding and region-based segmentation, are not reliable 

solutions for finding cardiac boundaries and require a pre-processing 

stage such as removing multiplicative noise [3]. Several analytical 

methods have also been proposed in the literature [4–7]. However, these 

methods, in general, are either computationally expensive and semi-

autonomous or require stringent constraints to provide a correct 

estimation. 

Accordingly, an automatic and real-time segmentation method of the 

endocardium borders is beneficial for interventional procedures and 

intensive care unit applications with monitoring requirements. 

Numerous echocardiographic segmentation techniques have 

appeared in the literature, each of which tackles the accompanying ul- 

trasound issues differently. The final contour produced depends on 

several factors (such as the initialization position, the used detection 

method, and data quality), and estimating the endocardial border 

accurately and consistently remains a challenging task. Conventional 

intensity gradient-based methods are not recommended in this field 

because they have limited success for clinical images [8]. On the other 

hand, statistical models that learn offline shapes have received consid- 

erable attention in echocardiographic image segmentation, especially 

after the work presented by Cootes et al. [9]. These models provide a 

significant advantage in the form of motion priors, giving the tracking 

process robustness against some echocardiographic image issues such as 
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shadows. But such models have a significant limitation, particularly 

pertaining to the assumption that different patients have similar cardiac 

structures. This assumption may not hold for new images due to subject 

tissue variations. This could be compensated for by providing a better 

initialization shape. Recently, deep learning techniques have garnered 

much attention in the field of computer vision due to their speed and 

promising accuracy. These methods are used in several applications, 

such as object detection, pose estimation and, most importantly, in ob- 

ject segmentation [10,6,5]. However, deep learning segmentation 

methods require an extensive and representative amount of annotated 

data to provide reliable segmentation results. This process requires an 

expert to delineate the endocardium border in potentially thousands of 

images, a process that is highly tedious and time-consuming. Also it 

should be noted that among cardiac chambers, left ventricle (LV) is 

responsible for pumping blood to the systemic circulation. As a result, 

most available cardiac segmentation methods were designed to track 

this chamber [11]. 

One of the obstacles on using deep learning methods for the ventri- 

cles segmentation was the absence of a sufficient and reliable dataset 

that could be used for training. However, Leclerc et al. [10] provided a 

labeled dataset which offers a variety of echocardiograms with different 

qualities (good, medium, and poor). Furthermore, to make a reliable 

dataset, Leclerc et al. [10] included echocardiograms that were 

contaminated with shadows and dropouts. However, in their paper, poor 

quality echocardiograms were ignored during the training process. 

In the recent literature, some approaches have been proposed to use 

a deep neural network for segmenting the endocardium border of LV or 

identifying the viewpoint. For instance, Carneiro et al. [7,12] developed 

an automated method that uses deep learning to track the cardiac 

boundary. Gao et al. [13] reported another deep learning technique 

which classifies the echocardiography viewpoint. Leclerc et al. [10] 

compared the state-of-the-art of non-deep-learning methods, and enco- 

der–decoder-based architectures showing the superiority of deep 

learning methods to their counterparts. Their provided CAMUS dataset 

2. Related work 

 
Similar to any image segmentation technique, the results of echo- 

cardiographic image segmentation depend on the data quality. With the 

presence of artifacts (shadows, noise, and dropout), the segmentation 

process becomes a complicated task. There are numerous segmentation 

approaches and just a few are considered when segmenting echocar- 

diographic images. Among those methods, active shape model (ASM) 

technique [9] provides notable results in mitigating some of the afore- 

mentioned artifacts. It is also claimed that ASM can segment echocar- 

diographic frames better than its counterparts that place their decision 

making on intensity values. In general, segmentation methods treat the 

procedure as calculating the probability of having a correct segmenta- 

tion using given information represented in training data (images, 

labels). 

Most of the available segmentation methods consist of two critical 

stages [16]. The first is the initialization step, which provides the seg- 

mentation method with a starting shape. The second is the process of 

searching for the optimum boundary, using the neighbourhood of the 

initial shape. Methods such as ASM and active contours require a manual 

initialization to start the segmentation process. Also, the accuracy of the 

final segmentation results depends on the initialization stage. The 

initialization process in ASM requires placing an average shape (ac- 

quired by training) on the target image to start the segmentation pro- 

cess. However, moving this initialization shape several piXels in any 

direction will produce a different result. Therefore, in this case, a 

method which produces the same results is crucial to avoid confusion 

and to remove manual initialization. 

From this perspective, and to have real-time results, deep learning 

methods have gained popularity. Carneiro et al. [7] developed a deep 

learning method to segment LVEndo into 2D echocardiographic images. 

However, their method tends to misdetect the middle part of the left wall 

of the LV. Their objective was to find the LV contour using the following 

decision function: 

comprises of four- and two-chambers acquired from 500 patients with s E s I 

∫  

sp  s Ĩ ds (1) 
manual segmentation (references) of the LVEndo, myocardium and left 

atrium (LA). 

= [ | ] = 
s      

( | , �) , 

A deep learning method is introduced in this paper to segment car- 

diac boundaries efficiently without manual initialization. This network 

has been trained using echocardiographic images with their segmenta- 

tions done manually to segment new images that were not present in the 

training dataset. This network is designed based on U-Net [14] and a 

modified residual network (ResNet) [15] to enable having significant 

number of layers and enhanced accuracy. U-Net is known for its appli- 

cability of producing a higher accuracy in image segmentation appli- 

cations, especially, in medical image segmentation studies. On the other 

hand, ResNet has several advantages such as accelerating the training 

speed of the networks, and reducing the effect of vanishing gradient. As 

a result, ResNet increases the network depth to reach over 100 layers. 

Also, ResNet obtains higher accuracy in image classification. 

In this paper, we propose a new hybrid network for deep learning to 

improve information preservation. Accordingly, we also propose 

different training process. In this context, the purpose of this paper is to 

provide answers to the following three questions: 

(1) How much improvement has our model contributed to the seg- 

mentation of echocardiograms? 

(2) How efficient is our design and is it applicable to real-time 

applications? 

(3) Will multi-stage gradual training process help decrease the 

training time? 

The outline of this paper is as follows. An overview of cardiac 

boundary segmentation methods is detailed in Section 2. The proposed 

network design is outlined in Section 3, followed by simulations in 

Section 4. Finally, Section 5 contains the conclusion. 
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where s  represents the delineation points, Ĩ  denotes the testing 

image, and � is the training dataset. They tried to find the parameter 

s which maximizes the probability function p  s Ĩ,     . They used 400 
images from 

12 patients to train their network and 50 images to test this network. 

They obtained an average Hausdorff distance of 0.91 and an average 

mean absolute distance of 0.86 on the Williams index. 

In 2017, Smistad et al. [4] trained a U-Net CNN network [14] and 

successfully segmented the left ventricle using 2D ultrasound images. 

However, the issue with this work is its use of the output of a state-of-

the-art deformable model segmentation method to train their 

network. Those models highly depend on the echocardiogram in- 

tensities, making it vulnerable in presence of shadows and dropouts. The 

results showed that the network obtained a Dice Similarity Index 

(DSI) score of 0.87. 

Pinto et al. [5] presented a deep learning method for brain tumor 

segmentation. In general, their convolutional neural network design 

is simple: it consists of nine spatial convolution layers and two max-

pooling layers. Each spatial convolution uses a 3 3 filter with stride 

one. The tested image dimensions are (4   33   33), with width and 

height being 33 piXels each and depth having 4 channels, which will 

increase to reach 128 activation maps in the 7th layer. However, this 

method uses a fully connected layer (FC layer) which increases the 

number of used parameters and the FLOP count. As a result, it 

slightly increases the required training time. Moreover, having an FC 

layer at the end of the network will tie the user into using a specific 

image size (4 

33   33) to obtain the segmentation results. 

Azarmehr et al. [17] tested the output of three CNN segmentation 

models (U-Net, SegNet and fully convolutional DenseNets or 
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Hu et al. [18] presented a model based on Bilateral Segmentation 

Network (BiSeNet) to segment pediatric echocardiograms in 4 chamber 

h f f 2 

+ 
2 

‖ 2 

 

 

Fig. 1. Model architecture, each blue square block represents a block. To simplify the design, only two blocks are depicted (first and last). The number of channels 

are above the blocks. 

 
FC-DenseNet). Those models were trained using 992 echocardiograms. 

The U-Net model outperformed the other models and produced an 

cross-entropy (Er), shape regularisation loss (Lh), and weight decay 

terms as follows 

average DSI of 0.93 ± 0.04. 
L =  f (ϕ(r); θ ) — f

 
y; θ 

) 
 2 
, 

 
view. The proposed model consists of two paths, one path captures 

 
minθ

(
Er(ϕ(r; θ) — y ) + λ1Lh 

λ2    
w‖2  

) 
(2) 

features. Also, they used a feature fusion module to fuse the features 

from those two paths. The model produced DSI of 0.932 when segments 

the left ventricle, and 0.908 for the left atrium segmentation. 

Dong et al. [19] used a model based on voXel-to-voXel conditional 

generative adversarial nets (cGAN) and the atlas segmentation proced- 

ure (VoXelAtlasGAN). This model is based on cGAN which requires 

generator to produce a segmentation result based on a prior knowledge 

presented by an atlas. Also, GAN needs a discriminator to discriminate 

between the resulted generator segmentation and the ground truth. The 

calculated average DSI of the produced results is equal to 0.953    0.019. 

In 2018 Veni et al. [20] used a combination of a trained fully con- 

volutional network and level set to produce a segmentation of LV 

chamber. The convolutional network is used to produce a segmentation 

of the LV, which is considered as a prior shape. This shape is then used 

by the level-set to converge to its final shape. The model produced an 

average DSI of 0.86    0.06. 

Jafari et al. [21] used an approach similar to [19] by using a 

generative model that maps the masks to their corresponding apical four 

chamber echocardiograms. The generator is then used as a discriminator 

to improve the U-Net segmentation results. The propose model produced 

an average DSI of 93.0  3.9 for ES frames and 94.1    3.3 for ED frames. 

There are other approaches which use a deep neural network to track 

cardiac boundaries [7,12]. However, they are very slow, taking about 20 

s to process one frame. Gao et al. [13] reported another deep learning 

technique which classifies the echocardiography viewpoint. In their 

training set, they used over 432 videos divided into eight different views 

such as A2C, A3C, and A4C. In this approach, they used different CNNs. 

The first CNN (Spatial CNN) is trained using the echo video while the 

other one received the acceleration using optical flow. With their 

approach, the process might require weeks to train the classifier; how- 

ever, unlike the training stage, the system could provide results in 

real-time. 

Oktay et al. [6] utilized CNNs to segment 3D LV structures using an 

anatomically constrained neural network (ACNN). The segmentation 

output is constrained to fit a non-linear compact representation of the 

underlying anatomy derived from an auto-encoder network, which 

makes it similar to the 3D U-Net [22]. In their work [6], training 

objective function was defined using a linear combination of 

low-level features, and the second path captures high-level context 
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Here y represents the labels, r denotes the observed intensity, w 
corresponds to weights of the convolution filter, and λ1, λ2 are the 

weights of shape regularization loss and weight decay terms used in 

the training. Also, ϕ is a mapping function ϕ : x⟶y, and θ denotes the 

model parameters. We will adopt a similar objective function in our 

work. The second term in (2) is to ensure the generated segmentation 

has a low dimensional space as the ground truth labels [6]. In their 

experiments, they used 3D ultrasound images provided by the CETUS 

dataset to assess the network, obtaining an average DSI of 0.912. 

It is crucial in medical applications to be efficient and reliable. 

Echocardiographic segmentation methods have to consider a number 

of issues to provide accurate results. For instance, it is of a great 

impor- tance to consider occlusions to accurately segment the LV, an 

issue which is not considered in some other approaches [13]. Also, an 

auto- matic and real-time segmentation method of the endocardium 

borders is beneficial for interventional procedures and intensive care 

unit appli- cations with monitoring requirements. Therefore, it is 

crucial to have a short inference time compatible with common video 

rate of 24 frames per second. 

3. Proposed approach 

 
This method is based on deep learning algorithms used to 

segment the LVEndo from cardiographic images. Since it is challenging 

to obtain a large number of labeled US images to train a CNN 

network, some data augmentation procedures, such as flipping and 

scaling the images in the dataset, are used. CNNs provide an 

estimation for the intensity seg- mentation labels by labeling each 

piXel in an image and independently taking the surrounding piXels 

into account. This is accomplished by passing the echocardiogram 

through sequential convolution layers with a number of filters. Each 

layer l 1, L consists of fc channels. Each channel represents a group 

of neurons that identifies a particular pattern. 

Let ys = yi i be a label container which represents different tissue 

types with yi 1, 2 which represent foreground and background. In 

addition, let r    ri   ℝ, i be the captured echocardiogram and    
be 
the total number of the training data. The main purpose of image seg- 

mentation is to estimate ys of the captured echocardiogram r. 

CNN 
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C 

× 

1 64 × 64 1.34 60 92% 

segmentation models are performed by training a discriminative func- 

tion to model a conditional probability distribution P(ys|r). The evalu- 

ation of class densities P(ys|r) is achieved by assigning a probability to 

 
Table 1 

The followed procedure of multi-stage training for different architectures. (Time 

measured using PC with NVIDIA TITAN V GPU.)  

each ri indicating the piXel’s class, generating two sets of class channels 

fc that are obtained through sequential convolution layers. The decision 
Architectures Order Image size epoch 

(min) 

Number of 

epochs 

Accuracy 

for class labels is computed using piXel-wise softmax as in 

e(fc (i)) 

ResNet18 + 
Unet 

1 64 × 64 0.19 42 89% 

pc(i) = ∑C
 

e f i , (3) ResNet18 + 2 128 × 128 0.55 70 90.3% 

j=1  
( j ( )) 

where fc i denotes the activation in feature channel c at the piXel po- 

sition i, and C is the total number of feature channels. Then cross- 

entropy is defined as 

Unet 

ResNet18 + 
Unet 

ResNet32 + 
Unet 

ResNet32 + 
Unet 

3 256 × 256 3.05 88 91.1% 

1 64 × 64 0.22 65 89% 

2 128 × 128 0.59 90 90.3% 

E 
∑ ∑

log

⎛

⎝ 

 

 

e(fc (i)) 

⎞

⎠
 

 

  

 (4)  ResNet32 + 

 

 

3 256 × 256 3.020 110 93.32% 
 

r = — 

∑
C      (fj (i)) 

Unet 

and applied to the extracted class activation maps. Similar to U-Net, the mapping procedure between intensities and labels ϕ(r) : r⟶ℒ is done ResNet50 + 
Unet ResNet50 + 

2 128 × 128 5.05 95 93.42% 
3 256 × 256 25.43 120 95.28% 

by optimizing the average cross-entropy loss of each class Dr = 
∑C     E(r, Unet 

c) using stochastic gradient descent. c=1 ResU 1 64 × 64 1.37 70 92.4% 

As mentioned earlier, our network has an analysis (encoder) and a 

synthesis (decoder) path, each with four resolution steps. In the analysis 

path, each layer contains several blocks: each block has three convolu- 

tions, and three batch-normalizations-and-ReLU-activations. The blocks 

in the first layer convolve the activation maps with a 1 × 1 convolution 
layer to preserve the activation maps’ dimensions. The second convo- 

lution uses 3 3 kernels and a stride of one. The activation maps’ di- 

mensions are maintained by applying padding of one. The third 

convolution is similar to the first convolution, except for the number of 

produced activation maps. The number of activation maps differs from 

one layer to another. For instance, the third and the fourth layers will 

generate 512 and 1024 activation maps, respectively as in Fig. 1. 

Furthermore, there is an extra convolution which happens precisely 

after the first block to reduce the activation map numbers and make it 

equal to that of the first convolution. 

It should be noted that the shortcut in the U-Net are taking place in 

two directions: horizontally between the decoder and encoder, and 

vertically between blocks. 

 Convolutional neural network 

 
CNN has been adopted in several fields, achieving some break- 

through results [23,24]. The CNN layers consist of convolving an image 

with a number of filters that have the same size within the convolutional 

layer. This will result in activation maps in which each of their elements 

is connected to the previous layer through the filter’s weights. Also, the 

number of produced feature maps is equal to the number of applied 

filters. 

Numerous neural network designs strive to obtain the best accuracy 

and less training time. Some of those networks use a fully connected (FC) 

layer at the decision-making layers. However, some scholars neglect this 

part in their design, which results in the reduction of the number of 

parameters. They may also accommodate more layers to capture further 

details. 

However, the problem with going deeper is having the gradients 

become infinitesimal because of the backpropagation procedures during 

the training process. This will result in having the network accuracy 

drop significantly. However, several approaches have overcome this 

issue, such as GoogleNet [25] and ResNet [15], which can reach 1200 

layers and deliver meaningful improvements [26]. As explained in 

Section 3.4 we will propose a modified ResNet to accommodate a suf- 

ficient number of layers and capture further details without sacrificing 

accuracy. 

ResNet50 + 

Unet 

, 

j=1 e c=1 i∈� 



International Journal of Engineering Sciences Paradigms and Researches (IJESPR) 

(Vol. 32, Issue 01) and (Publishing Month: July 2016) 

(An Indexed, Referred and Impact Factor Journal) 

ISSN: 2319-6564 

www.ijesonline.com 

388 
 

× 

× 

× 

× 

× 

× 

× 

× 

× 

× 

× × 

ResU 2 128 × 128 5.12 110 94.13% 

ResU 3 256 × 256 26.05 150 97.5% 

    ResU – 256 × 256 26.05 192 97.5%  

 
 Training details of the proposed model 

 
In this section, we discuss the details of data augmentation used 

in training and the training steps. The model is designed to segment 

256 256 echocardiographic images. Also, our network does not 

contain any FC layer and, hence, enables the use of images with 

different sizes. Therefore, starting with lower image sizes for training 

(64 64, 128 128), before reaching 256 256 images, 

would expedite the training process where it reduced the required 

training process by 7 h. Table 1 shows the number of required epochs 

for each architecture to reach the provided accuracy during a training 

stage. The last row shows the direct introduction of 256 256 images 

for training ResU, resulting in 5001.6 min for training. The previous 

three rows exhibit gradual training of ResU using different image 

sizes, resulting in a total training time of 4566.6 min. The reason 

behind this improvement is the multi-stage gradual training 

process, which is first carried on 64 64 images, 

fol- lowed by 128 128 images, before the final stage of training 

involving 

256 256 images. This will result in having the final stage of training to 

start with a higher Dice accuracy compared to start of training from 

scratch when applied on 256 256 images. The maximum image size is 

determined by the computing system capability. 

The CAMUS dataset comes with three different image qualities 

(good, medium, and poor). Leclerc et al. [10] trained their model 

using good and medium echocardiograms combined, excluding poor 

quality images, arguing that the network will treat the poor quality 

data as unimportant entries. In our work, on the other hand, we first 

exploited the good images then sequentially used the medium images 

and lastly we did not ignore the images with poor quality. While 

Leclerc et al. [10] argued that the network treat the poor quality data 

as unimportant entries, we argue that multi stage training will enable 

learning of useful details in poor quality images that might be lost 

otherwise. Therefore, we designed a path of training to force the 

network to adapt to the new entries of poor quality echocardiograms 

Fig. 2. The model was first trained using 64 64 good quality images. 

Starting with a small dataset size is very beneficial, because the 

processing power and required re- sources are not substantial, 

making the training process fast compared with the following steps. 

After training the model using 64 64 good quality echocardiograms, 

we retrained the model using 128 128 good quality images. While the 

outcome was improved, higher demand was 

placed on memory and processor, making the training slow. Subse- 

quently, we retrained the model using 256 × 256 good 
quality 
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Fig. 2. A flow chart of training and validating process. 
 

echocardiograms. However, due to the limited GPU memory, by using 

256 256 images, we end up using lower number of batches for 

training. After this stage of training using good quality echocardiograms, 

a second training stage was carried out using medium quality echocar- 

diograms with a size of 256 256. After several training epochs, the 

model started to produce a good Dice similarity index. The same pro- 

cedures were followed on the poor quality echocardiograms. This 

training step made use of previously obtained information from both 

high and medium quality images and updated them using the poor 

quality images. 

Moreover, in deep learning care should be taken during training to 

ensure generalization capability for the model, avoiding overfit 

network. Therefore, the training dataset was artificially augmented 

using affine transformations. The applied transforms are adopted and 

used as follows: 

(1) A random horizontal translation with a probability of 0.5 is 

applied to improve the network output in the presence of 

shadows and drop-outs; 

(2) A random rotation between 10 and 10 with a probability of 0.75 

to avoid adapting the network to a specific orientation; 

(3) A random scaling; and 

(4) Random contrast. 

 
The probability values selected for this process are complaint with 

the values suggested by Fastai. These transformations are applied to the 

training dataset every time we trained our network. Next, we extracted 

20% of the training set and kept them as a validation set to provide an 

unbiased evaluation of the model on the training dataset. 

 
 Implementation details 

 
Python language and Fastai library were used to implement the 

proposed method. All experiments were conducted within LinuX OS 

running Ubuntu 16.04. The training process was carried out on a PC 

with Intel® i7-8700K CPU @3.70 GHz and 16 GB memory, and NVIDIA 

TITAN V GPU. To deal with different echocardiogram qualities and 

representations, the echocardiograms were normalized by the mean 

value and standard deviation for training purpose. A cross-entropy loss 

function was utilized with weight decay 1 10—4 [15]. Moreover, a 
batch size that varied from 2 to 8, depending on the echocardiogram 

dimensions. Also, a variable learning rate (varying between 1 × 10—4
 

and 1   10—6 ) based on the cyclic learning rate approach was utilized. 

The limits of learning rate was selected based on trail and error to 

provide enhanced accuracy. Furthermore, Adam optimizer was inte- 

grated to update the network weights. 

 
 Segmentation of LV endocardium 

 
This study aims to provide a reliable and efficient cardiac boundary 

segmentation method. The common issues that arise in echocardiogra- 

phy images, especially the dropout, make cardiac boundary segmenta- 

tion difficult for many of the previous segmentation and tracking 
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methods such as optical flow or block matching. Therefore, in 

methods that do not use deep learning, scholars tend to combine two 

techniques. For example Leung et al. [27] integrated affine 

transformation with optical flow to overcome this issue. 

Moreover, the process of validating an automated border 

detection method in medical images is not an easy task to deal with, 

especially when several factors (such as image quality and patient 

data) control the results. 

Our proposed architecture uses U-Net [14] with some 

modifications on the encoder side. Two factors are considered here: 

going deeper and improving the segmentation results. With the 

utilization of the going deeper concept presented in ResNet [15], the 

network is designed to go deeper in layers without facing a vanishing 

gradient problem. 

Therefore, a hybrid network, namely ResU, was designed by modi- 

fying ResNet-50 network and using it as an encoder for the U-Net. 

The proposed model makes use of echocardiogram information 

efficiently by strengthening feature propagation throughout the layers, 

enabling it to preserve as much information as possible from the 

previous layers. This model was built based on our training strategy in 

Section 3.2. Also, we used an Adam optimizer in our model and 

minimized the following cost function (5): 

minθ

(
Er(ϕ(r; θ), y       

λ  
w‖2  

)
, (5) 

where λ is the weight decay term and Er is defined in Eq. (4). 

 ResNet50 as encoder 

ResNet is best known as a recognition and classification network 

which provides a very high accuracy rate, whereas U-Net is known as 

a segmentation network designed to segment biomedical images. Setting 

a ResNet as an encoder in the U-Net will help improving the 

classification accuracy of the segmentation network as the number of 

used parameters is increased, and as a result more spatial information 

is preserved. Moreover, using a pre-trained ResNet will reduce the 

required training time and enhance the quality of the segmentation 

results. 

ResNet has several architectures with different number of layers. 

For instance, ResNet-34 and ResNet-50 are two known ResNet 

variations, and the difference between these two architectures is in 

the number of convolutions and batch normalization layers. Unlike 

other approaches which use max-pooling to reduce the feature maps 

size, ResNet reduces the feature maps dimensions during spatial 

convolution operations. Both ResNet-34 and ResNet-50 architectures 

were tested and ResNet-50 provided better results. 

 ResU 

Any information could be of benefit to segment poorly captured 

echocardiograms. Therefore, we designed our model based on this 

concept to provide better segmentation, and to achieve this goal, a 

modified version of a ResNet is used. ResNet is a very sophisticated 

network which is used in classification and detection, but it was not 

created to segment echocardiograms. Each layer in ResNet has 

several blocks and each block receives a summation of two entries: 

first entry is the output from the previous layer; with the second one 

being the output 
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Fig. 3. The first two layers of the proposed ResU (left) and ResNet (right). 
 

from the second to the previous layer. It is crucial to propagate and 

strengthen the features through the model to enhance echocardiogram 

information utilization. Accordingly, we spread the originated data from 

the previous layer to each block in the current layer. ResNet uses the 

output from the second previous block as an input in the summation 

operation. However, unlike ResNet, to improve data preservation, our 

model uses the convolved input data and sums it with each block output, 

as depicted in Fig. 3. 

Suppose a single image I is carried through a convolutional network. 

The network contains several layers and each layer has a number of 

blocks which apply a non-linear transformation Fl(⋅), where l denotes the 
block indexes. The transformation Fl ⋅ is composed of operations such 

as rectified linear units (ReLU), batch normalization (BN), and convo- 

lution (Conv). We express the input of the first block in each layer as I0 

and the output of the lth layer as Il. 

Unlike a traditional convolutional network, ResNet adds a connec- 

tion that holds the input matriX which is summed with the output of the 

non-linear transformation. 

Il = F(Il—1) + Il—1 (6) 

Whereas in our proposed architecture, we keep I0 to be propagated to 

each block as in Fig. 3. That is 

Il = F(Il—1) + I0. (7) 

To elaborate on the difference between ResU and ResNet and 

demonstrate the advantages of ResU over ResNet, we suggest the 

following experiment. We feed the system with a zero mean unit vari- 

ance Gaussian noise. Fig. 4 shows the results. Fig. 4 shows the results of 

this experiment. Fig. 4a illustrates auto-correlation average of the output 

of 60 trials for the proposed ResU in Fig. 3. Fig. 4b is the averaged auto- 

correlation of 60 trials for ResNet. Both Figs. 4a and b show the averaged 

auto-correlation of the output of the second layer. Also, Fig. 4c dem- 

onstrates the averaged auto-correlation on the whole encoder part in 
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ResU, where Fig. 4d shows the averaged auto-correlation of the 

output of the entire encoder in ResNet. As expected, not only the 

output vari- ance of ResU is less than that of ResNet, but also the 

energy of auto- correlation in ResU is less than that of ResNet. This is 

due to the fact that noise in ResNet will propagate with a higher 

correlation than in ResU as the input and the output of each block are 

being added in ResNet. Therefore, there is a higher chance of a higher 

correlation be- tween these noises in ResNet. On the other hand, in 

ResU the output is being added to the input of the layer which can be 

further from the input of that block which has less correlation with 

that output. This experi- ment illustrates what happens to the additive 

noise of the image in both ResNet and ResU and indicates efficiency of 

ResU over ResNet in dealing with this noise. 

As in a traditional U-Net, our proposed model decreases the 

feature maps dimensions at each layer. It receives an image with a 

resolution of 

256 256 and the last layer in the encoder will have 8 8 feature maps. 

Also, we trained our model using learning rates calculated based on 

the cyclic learning rate proposed by Smith et al. [28]. In addition, to 

conserve memory usage, we changed batch size based on the used 

image dimensions. For instance, a batch size of two is used when 256 

256 image dimensions were utilized in training. Table 2 provides the 

used normalization, batch size and the learning rate in the proposed 

architecture. 

The first layer in ResU will generate a 64 activation map. The next 

layer will receive the generated activation map and convolve it, 

creating a 128 activation map. This process will continue through the 

remaining layers, until the activation map reaches 2048. 

Each layer results are kept to be used during the deconvolution 

part (decoder). This can be expressed as a set of functions, each of 

which depends on the output of the previous function as follows 

Fe = F5(F4(F3(F2(F1(I1, w1), w2), w3), w4), w5). (8) 

Similar to the encoder, the decoder has several sub-parts. It will 

receive the calculated activation maps during the encoding process 

and 
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Fig. 4. The averaged auto-correlation of output to a white a unit variance Gaussian noise (representing additive noise), averaged over 60 trials. (a, c): ResU results, 

(b, d): ResNet results. (a, b) are the output of the second layer and (c, d) show the output of the last layer. 
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Table 2 

The characteristics of U-Net 2, ResNet-U-Net and the proposed approach. 

 

 
ResNet-U-Net 8 × 8 BatchNorm 4 1e—4 To 1e—5 

Proposed 8 × 8 BatchNorm 2-8 1e—4 To 1e—6 
 

 

 
Table 3 

A comparison of LV segmentation with no distinction of the chamber current 

phase (mean ± standard deviation).  

Methods DSI HD 
 

 

[17] 
0.93 4.52 

±0.04 ±0.9 

[18] 
0.93 

NA 

[19] 
0.953 

NA 

±0.03 

Proposed 
0.975 2.562 

±0.0109 ±0.7242 
 

 

 
merge it with the de-convolved activation map (depth-wise). Also, un- 

like the encoder, the decoder will reduce the number of channels by half. 

For instance, the first subpart in the decoder will receive an activation 

map of 1024-depth. Furthermore, it will combine it with generated 

activation maps from the previous encoder layer, which results in an 

activation map with a depth of 2048 which is reduced to 1024 after a 

convolution step. Moreover, decoders increase the activation map di- 

mensions, which is the opposite of what happens in the encoder part. 

The reduction of the depth number and the increase in the activation 

map sizes will continue until it reaches a depth of two, and the dimen- 

sion of 256 256 which is a mask representing background and 

foreground. 

 
4. Simulations 

 
In our simulations, ResU was tested it on four different groups of 

endocardiograms. The first group of echocardiograms contains LVEndo in 

end-diastole (ED) phase. The second group includes echocardiograms of 

LVEndo in end-systolic (ES) phase. The third group consists of only poor 

quality echocardiograms. The final group consists of both ES and ED 

phases in echocardiograms with good and medium quality. All valida- 

tion groups consist of both two-chamber and four-chamber 

echocardiograms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4 

 Dataset 

 
The CAMUS [10] dataset was used to train and test the segmentation 

network. This dataset consists of clinical exams from 500 patients. Also, 

it enforces clinical realism by including cases that are difficult to trace, 

cardiac walls that are invisible, and a wide variate of acquisition set- 

tings. The dataset provides both ED and ES for two chambers and four 

chambers with extra information about the patients’ ejection fraction 

(EF) and image quality, which comes in three different categories (good, 

medium and poor). The main problem for labeling 2D echocardiograms 

is the artifacts which accompany the echocardiograms, such as shadows 

and low contrast. For medical images, labeling is usually expensive to 

acquire because both professionals and time are needed to provide 

reliable annotations. Three cardiologists (O1, O2, O3) participated in the 

annotation of the CAMUS dataset. The first cardiologist defined a 

consistent segmentation protocol which was followed by the other car- 

diologists [10]. 

Also, due to the lack of a reliable ECG, the cardiologists did not 

follow the recommendations of both the American Society of Echocar- 

diography and the European Association of Cardiovascular Imaging in 

defining both ES and ED frames. The method of selecting ED and ES in 

this dataset was by observing the LV dimensions. Moreover, CAMUS was 

divided into 10 parts, with each part containing images from 50 pa- 

tients. We used one part for testing and the remaining (9 parts) for 

training ResU. 

 
 Evaluation metrics 

To measure the accuracy of segmenting LVEndo, three different met- 

rics are used, namely, Dice Similarity Index (DSI) [29], the 2D Hausdorff 

distance (HD), and the mean absolute distance (MAD) are used to 

evaluate the segmentation accuracy. 

Let U u1, u2, …, um    be the predicted area, and R r1, r2, …, rm 

be the reference area, SU represent the predicted region enclosed by U, 

and SR denote the reference region enclosed by R. 

DSI measures the overlap between the regions from the manual and 

automatic segmentation techniques. That is 

(SU ∩ SR) 
(9)

 

(SU + SR) 

where SU, SR are predicted surface and the reference area, respectively. 

Also HD and MAD are defined as follows: 

HD = max
  

maxi{d(ui, R) } + maxj{d(ri, U) } 
)
, (10) 

Segmentation accuracy of the 3 evaluated methods and the three cardiologists. ED: end diastole, ES: end systole, DSI: Dice similarity index, MAD: mean absolute 

Architectures Lowest Res Normalization Batch size Learning rate 

U-Net 2 [10] 8 × 8 BatchNorm 8 1e—3 
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distance, HD: Hausdorff distance, APT: automated processing time (mean ± standard deviation). [6] (GPU: Nvidia GTX-1080), [10] (GPU: Nvidia Tesla M60).  

Methods ED    ES   APT 

 DSI MAD HD  DSI MAD HD  

O1 vs. O2 0.919 2.2 6.0  0.873 2.7 6.6  

 ±0.033 ±0.9 ±2.0  ±0.060 ±1.2 ±2.4 
N/A 

O1 vs. O3 0.886 3.3 8.2  0.823 4.0 8.8  

 ±0.050 ±1.5 ±2.5  ±0.091 ±2.0 ±3.5 
N/A 

O2 vs. O3 0.921 2.3 6.3  0.888 2.6 6.9  

 ±0.037 ±1.2 ±2.5  ±0.058 ±1.3 ±2.9 
N/A 

[6] 0.932 1.7 5.8  0.903 1.9 6.0  

 ±0.034 ±0.9 ±3.1  ±0.0.059 ±1.1 ±3.9 
0.06 s 

[10] 0.939 1.6 5.3  0.916 1.6 5.5 0.09 s 

 ±0.043 ±1.3 ±3.6  ±0.061 ±1.6 ±5.5 ±0.03 

Proposed 0.975 0.006 2.846  0.972 0.0057 2.61 0.05 s 

 ±0.0086 ±0.0032 ±0.8014  ±0.0106 ±0.0018 ±0.6723 ±0.004 



International Journal of Engineering Sciences Paradigms and Researches (IJESPR) 

(Vol. 32, Issue 01) and (Publishing Month: July 2016) 

(An Indexed, Referred and Impact Factor Journal) 

ISSN: 2319-6564 

www.ijesonline.com 

396 
 

 
 
 

 

 

Fig. 5. The first and the third rows are the original images, the second and the fourth rows contains the performance of our model (blue) and manual boundary 

segmentations (red). (d and h) are poor quality images, and the rest are medium quality images. 
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Fig. 6. Our proposed model gives good results even with flipping the testing images (blue) and manual boundary segmentations (red). 
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Fig. 7. The effect of blurring echocardiograms on our model predictions (c and d are the blurred versions of a and b). 
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Table 5 

The effect of different selected transformations on the model prediction. 
 

Transformation DSI MAD HD 

Rotation 
0.967

 0.0092 3.0340 

±0.0214 ±0.0048 ±0.9038 

Horizontal flipping 
0.9793

 0.0058 2.5306 

±0.0083 ±0.0023 ±0.7419 

Scaling 
0.9626

 0.0155 3.3873 

±0.0219 ±0.0073 ±1.0172 

No transformation 
0.9799

 0.0056 2.5098 

±0.0077 ±0.0021 ±0.7128 

 

Table 6 

The effect of using Gaussian filter with different sigmas on the model prediction. 
 

σ DSI MAD HD 

0.5 
0.9699 0.2061 2.6848 

±0.0145 ±0.0856 ±0.7044 

0.9667 0.2035 2.7652 
0.7 

±0.0162 ±0.0858 ±0.7338 

0.9 
0.9574 0.2025 2.8940 

±0.0525 ±0.0878 ±0.7718 

1.2 
0.9543 0.2041 3.0412 

±0.0289 ±0.0870 ±0.7547 

1.5 
0.8981 0.2017 3.5122 

±0.1273 ±0.0840 ±0.9386 

will identify basic shapes, as those shapes become more and more so- 

phisticated, the deeper we go into the network. Hence, this network will 

identify the object or objects that are included in the training set based 

on a scoring mechanism. Therefore, a small modification in the object 

shape will result in a decrease in the decision score. Accordingly, we 

used scaling and rotation, and other tools in our augmentation process to 

improve the model’s predictability. For instance, dropouts are one of the 

issues that accompany echocardiograms and, to deal with this issue, we 

augmented the training data set with random scaling and rotation 

functions. The use of augmentation resulted in a model that can reliably 

predict the LVEndo walls. 

The model performance tested on five different sets of images. Two 

sets are grouped based on the cardiac phase (ES, ED), and the rest are 

based on the echocardiograms quality (good, medium, poor). Also, to 

test our model robustness, some random affine transformations were 

applied, such as scaling, rotating, and translation. 

Each of those echocardiogram sets was tested two times (with and 

without affine transformations). The first set contained echocardio- 

grams in ES phase. The set was first tested without applying affine 

transformations and it produced a DSI of 0.9807 0.001, and after 

applying affine transformations, it reached a DSI of 0.9747 0.0076. 

The second set contained the cardiograms in ED phase, and the model 

generated DSI of 0.9778    0.0035 and 0.9758    0.0086, before and 

after applying affine transformations, respectively. 

The next three sets contained images with various quality. First 

group had good quality echocardiograms, for which our model produced 

DSI of 0.9811 0.004, 0.9758 0.0086, before and after affine trans- 

formations, respectively. The second group contained medium quality 

echocardiograms, for which our model generated DSI of 

MAD = 
1 
{

1  ∑ 
d(ui, R) + 

1  ∑ 
d
 
rj, U

) 
}

, (11) 
 

   

0.9773     0.0062, and 0.9758     0.00106, before and after applying 

affine transformations, respectively. Thirdly, we tested our model per- 
2   n 

i=1 
n 

j=1 formance on poor quality echocardiograms, and with those images, DSI 

of 0.9724 ± 0.0102, and 0.9736 ± 0.0098 were reached, before and 

where d(ui, R) = minj ‖ rj — ui ‖ . 
MAD is used to represent the global disagreement between two 

contours with HD suggesting how far these contours are from each other. 

 
 Empirical results 

 
The purpose of the simulations was to verify the method and 

compare its performance with the benchmarks established in CAMUS 

and previous established approaches. 

Table 3 provides the accuracy of the methods with no distinction of 

the chamber current phase, and it shows that ResU provided higher DSI 

than other deep-learning-based segmentation methods. Table 4 repre- 

sents the segmentation accuracy calculated from echocardiograms with 

good, medium, and poor image qualities. Mean and standard deviation 

values for each metric were obtained by following the same strategy as 

Leclerc et al. [10]. Fig. 5 depicts the ground truth and the prediction of 

three samples from the validation dataset. From these results, it is 

concluded that our proposed method obtains better segmentation scores 

for both ES and ED. Moreover, our approach is robust to image affine 

transformations such as scaling, rotation, and horizontal flipping, with 

example being shown in Fig. 6. 

Moreover, the results of our model predictions on blurred and non- 

blurred echocardiograms are depicted in Fig. 7. 

Furthermore, random translations were applied on the same echo- 

cardiograms to test the model accuracy on predicting the LV walls, and 

Table 5 show the ResU results. 

For a real-time application, it is crucial to have a short inference time 

compatible with common video rate of 24 frames per second. The pro- 

posed system has inference time of 0.050 0.0046 s for segmenting a 

single image, using a PC with Intel® i7-8700K CPU @3.70 GHz. 

In Section 3.1, we mentioned that during the training process, the 

deep learning network starts to learn patterns and shapes. First, layers 
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after the application of affine transformations, respectively. 

In image processing, edges are characterized by sharp changes in 

intensities. Thus, blurring filters have the undesirable effect on 

correctly segmenting the edges. Therefore, we randomly selected a set 

of echo- cardiograms from the validation dataset and applied a 

Gaussian filter with σ range between 0.5 and 1.5 to produce the 

blurring effect on the echocardiograms. Table 6 provides the model 

segmentation accuracy when Gaussian filter is applied on set of 

echocardiograms. This drop in accuracy was expected because the 

blur function averaged the in- tensities in the echocardiograms. 

As a result, the edges are less visible than those in the training set, 

making our model unable to find some parts of the LVEndo. 

The training procedure in Section 3, significantly improved the 

segmentation results. Hence, instead of starting a training stage on 

pa- rameters from a random state, we used the acquired knowledge from 

the previous stage to update the parameters with new trained entries. 

Therefore, we started training the network using images with 64 64 

dimensions to initialize the model parameters. This is a pre-training step 

which initializes the model’s weights. Also, as a pre-training stage, we 

selected 64 64 images to reduce the required training process time. 

Therefore, each training stage benefited from the previous training 

stage, and it continued improving the segmentation results as more 

details became available. This procedure was repeated three times. It 

produces 0.92 DSI, 0.94 DSI, 0.97 DSI in the first, second and the 

last training stages, respectively. Also, it includes results pertaining to 

the three cardiologists who annotated the LVEndo in the CAMUS 

dataset. 

As one can note, our proposed method obtained better DSI scores 

(mean DSI of 0.975 at ED and 0.972 at ES), HD (mean HD of 2.846 at 

ED and 2.61 at ES) and MAD (mean MAD of 0.0079 at ED and 0.0057 at 

ES). These results show the effectiveness of our proposed model. Also, 

our proposed approach is able to provide a good segmentation results 

of poor quality echocardiograms. Moreover, ResU is able to segment 

LV borders even after applying random translations on the 

echocardiogram 
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as in Fig. 8. 

5. Conclusion 

Fig. 8. Random translations are applied on the same echocardiograms to test the model ability to predict the LV walls. 

 
acquisition, writing – reviewing and editing, revising. 
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